
iGent AI VIBECODEBENCH: SONNET 4.0

BENCHMARKS COMPILED 05/2025

Maxime Robeyns
maxime@igent.ai

Summary: We look at LLM code generation in the context of entirely autonomous, mid-scale (<10,000 LOC) codebase
generation, with progressively revealed feature specifications. We focus not just on code functionality, but also notions
of code maintainability, marginal feature implementation cost and user deception. We compare Sonnet 4.0 with Sonnet
3.7 and 3.5 v2; GPT 4o and 4.1; and Gemini 2.5 Flash and 2.5 Pro. Sonnet 4.0 achieves strong results in many categories
in this eval, yet does not clearly surpass 3.7 or Gemini 2.5 Pro. The marginal feature implementation cost (measured in
tokens) is not statistically different between the best models, after controlling for implementation success. Gemini 2.5
Pro (05-06) is able to successfully complete a comparable number of features as 3.7 and Sonnet 4.0, although at higher
USD cost (assuming Sonnet 4.0 is priced no greater than 3.7). Sonnet 4.0 scores slightly higher than Sonnet 3.7 and 3.5
in our measures of code quality, and walks back on Sonnet 3.7’s verbosity. We find Sonnet 4.0 slightly improved in
comparison to 3.5 and 3.7 on measures of ‘goalpost moving’ (i.e. making a task appear complete when it is in fact not).

1 Introduction and Setup

VibeCodeBench contains several programming mini-projects, each with 10 sequential feature specifications which are
revealed to the agent one at a time.

This tests not just whether the LLM can implement functional code, but whether the code is maintainable over long
horizons and can be adapted to changing requirements, while remaining easy to work with. The agent is entirely
un-directed beyond the progressively disclosed feature specifications, so decisions relating to code structure and
organisation are entirely down to the underlying LLM and its biases. The features and problem sets are intentionally
designed so that poor code decisions made early on lead to later features becoming increasingly difficult to implement
cleanly, frustrating progress.

More details of the problems in the dataset and representative feature progressions are listed in Appendix A.

Each model is tested using an identical agent framework - sharing prompts and tool sets. The test agent scaffold is
a relatively minimal agent loop, with the only notable features being sub-agents invoked as tools to manage context
window length and an oversight mechanism to catch errors and prevent pathological behaviours such as repeating failed
approaches. High thinking budget reasoning models are exposed through tool calls.

The only scaffolding variation is in the tool calling mechanism; we use an un-structured tool calling mechanism for
Sonnet 3.5, 3,7 and Sonnet 4.0 as well as Gemini 2.5 Pro. Weaker models using constrained decoding from their
respective APIs are Gemini 2.5 Flash, and GPT 4o and 4.1.

1.1 Interpreting the Results

To reduce variance and gain more insight from the results, we sample agent trajectories n = 5 times for each model,
problem pair. Unless stated otherwise, for each metric we report the mean ± 2 standard errors. Most results are
presented as graphs over feature iterations: generally the feature number can be taken as a proxy for the complexity
of the sub-task at hand, with later features generally being more sophisticated, and building upon a larger existing
codebase where poor previous design decisions come to bear.

Also note that while the test agent framework is kept identical across runs and models (with the exception of the tool
calling interface), as model behaviours diverge it isn’t necessarily ideal to benchmark models with an identical scaffold.
The scaffold was primarily developed using Sonnet and Gemini models for testing, and as such may offer a slight bias
against the OpenAI models.

iGent AI Sonnet 4.0 VIBECODEBENCH

2 Marginal Cost Per Feature

We start by reporting the tokens used by each agent for each new feature request in Figure 1. We stress that this is
not the token cost to implement each feature, since all models fell short of a full implementation of each feature. The
Gemini models use the most tokens per feature by a large margin, with Gemini 2.5 Flash being a particularly strong
outlier, explained by strong model agency paired with ineffective use of tools leading to many tokens being spent fixing
indentation issues and the like. An optimal scaffold for these cheap models may simply do away with sophisticated
tools and overwrite each file. On the other end, the GPT models spend a low number of tokens per feature since they
only implement each feature partly, lacking the agency to complete each when working autonomously.

0 2 4 6 8
Feature Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

To
ke

ns
 (1

0M
)

1e7 Token Cost per Feature - all
Sonnet 4.0
Sonnet 3.7
Sonnet 3.5 v2
Gemini 2.5 Pro (05-06)
Gemini 2.5 Flash (04-17)
GPT 4o
GPT 4.1

Figure 1: Total tokens spent on each feature, irrespective of feature implementation quality or completeness.

Stripping away data points where the feature implementation scored an average of below 50% on the held-out test set,
we see the result in Figure 2:

0 1 2 3 4 5 6 7
Feature Iteration

0

2

4

6

8

To
ke

ns
 (M

)

1e6 Token Cost per Feature (>50% private test pass rate; lower is better)
Sonnet 4.0
Sonnet 3.7
Sonnet 3.5 v2
Gemini 2.5 Pro (05-06)
Gemini 2.5 Flash (04-17)

Figure 2: Tokens spent implementing each feature to at least 50% pass rate on the held-out test set.

2

iGent AI Sonnet 4.0 VIBECODEBENCH

We note that Sonnet 4.0 spends more tokens than Sonnet 3.5 and 3.7 on early features, reflecting an increased propensity
to refactor. This may be what allows it to spend fewer tokens during later iterations, undercutting Sonnet 3.7 by about
500k tokens on average while achieving comparable test outcomes.

3 Code Correctness

For each feature in each benchmark problem, we create a comprehensive test suite that rigorously tests the public API
surface defined in each feature specification. This runs through both the happy path as well as many edge cases, using
fuzz-testing to catch defects. It also tests for regressions from previous feature iterations, if the new feature is not
intentionally breaking. Crucially, these tests are hidden from the agent, which is left to write its own unit tests to verify
its implementation of the feature specification before completing.

In Figure 3 we show the average pass rate of the rigorous held-out test set after each feature iteration. While the sample
size of only 20 agent runs per line in the graph does not afford us much statistical power, it seems that Gemini 2.5 Pro is
strongest during the simpler early iterations, closely followed by Sonnet 3.7 and then Sonnet 4.0.

0 2 4 6 8
Feature Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pa
ss

 R
at

e

Held-Out Feature Test Pass Rate (higher is better)
Sonnet 4.0
Sonnet 3.7
Sonnet 3.5 v2
Gemini 2.5 Pro (05-06)
Gemini 2.5 Flash (04-17)
GPT 4o
GPT 4.1

Figure 3: Test pass rate of the rigorous, held-out test set. Measures feature implementation quality.

We also show the agent’s pass rate on its own self-written tests for each feature in Figure 4. While these are generally
slightly higher than the held-out test pass rate, it is surprising that they are not closer to 1.0. This might be seen as
a proxy for ‘perseverance, since failing tests here indicate the agent concluded the run without having fixed its own
failing test cases.

4 Goalpost-Moving

We’ve recently seen an increase in agent claiming “The feature has now been implemented successfully!” only for closer
inspection to reveal that some terminal output or other execution feedback being disregarded, hallucinated (depending
on the scaffold), or outright fabricated by writing a shell script with the test outputs the agent wants to see among other
devious schemes. This may be an artifact of RL post-training where the model learns that it is more important to show
that a feature is complete than to actually complete it.

We term this goalpost moving and attempt to quantify it here. Upon finishing a feature implementation request, each
agent is asked to report the degree to which it estimates the feature is complete, as a number between 0 and 1. It may
use its self-authored tests to help it come up with this number, or any other information or heuristics it has available.

3

iGent AI Sonnet 4.0 VIBECODEBENCH

0 2 4 6 8
Feature Iteration

0.0

0.2

0.4

0.6

0.8

1.0
Pa

ss
 R

at
e

Agent's Self-Authored Test Pass Rate (higher is generally better)

Sonnet 4.0
Sonnet 3.7
Sonnet 3.5 v2
Gemini 2.5 Pro (05-06)
Gemini 2.5 Flash (04-17)
GPT 4o
GPT 4.1

Figure 4: Test pass rate of the agent’s self-authored tests during each feature implementation.

We then subtract from this self-reported feature completeness number the pass rate of the rigorous held-out tests and
report the different.

This is shown in Figure 5. For the earlier, simpler features Sonnet 4.0 routinely under-states the feature completeness,
often rating the feature as being only 0.95 complete despite 100% of its own tests passing. All models show an upward
trend towards over-confidence in feature completeness as task difficulty increases in later iterations. This may be
explained by lack of test coverage as opposed to explicit deceptiveness or reward hacking, especially for weaker models
like Sonnet 3.5.

0 2 4 6 8
Feature Iteration

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Re
po

rte
d

- T
es

t P
as

s R
at

e

"Goalpost Moving": Reported Feature Completeness vs Actual

Sonnet 4.0
Sonnet 3.7
Sonnet 3.5 v2
Gemini 2.5 Pro (05-06)
Accurate Reporting

Figure 5: Goalpost moving: any deviation away from 0 is generally bad: low numbers show risk aversion or
perfectionism, while high numbers suggest deception and reward hacking.

4

iGent AI Sonnet 4.0 VIBECODEBENCH

As a point of comparison, in Figure 6 we show a similar plot with the difference between the agent’s test pass rate and
the private test pass rates, which may help explain how much of the upward drift in the reported goalpost metric from
Figure 5 is due to poor test coverage and naive feature implementations rather than deception.

0 2 4 6 8
Feature Iteration

0.4

0.2

0.0

0.2

0.4

Di
ffe

re
nc

e

Agent Test Pass Rate - Held-Out Test Pass Rate

Sonnet 4.0
Sonnet 3.7
Sonnet 3.5 v2
Gemini 2.5 Pro (05-06)
Ideal

Figure 6: Difference between the agent’s test pass rate and the rigorous held-out test pass rate. A difference of 0 is best,
with values less than 0 indicating luck (the agent was doing better than it thought; perhaps due to an error in the tests)
and values greater than 0 possibly explained by poor test coverage or understanding of the feature.

5 Code Quality

Inspecting the average number of files in the agent’s solutions in Figure 7 (left), we see three broad classes of approaches.

1. The first is models with an average below 2, meaning that at least some of the solutions were implemented entirely
within the __init__.py file that the framework places in the solution directory before F0 to ensure the tests can
import the solution. This is generally poor form, and indicates models which are over-reliant on user instruction or
examples, and do not ‘take initiative’. GPT 4.1 is worst in this regard, followed by GPT 4o (gpt-4o-2024-11-20)
and then Sonnet 3.5 (v2) in earlier iterations.

2. The second category is models which implement a single file solution, alongside the default __init__.py file.
Both Gemini models, as well as the Sonnet 4.0 model fall in this category, taking the minimum initiative to start
an appropriately named file. However, these files often end up in excess of 1,000 LOC and shows a failure to
appropriately refactor.

3. The final category are models which take the initiative to spread the codebase across multiple files. Sonnet 3.7 is
best in this regard, however Sonnet 3.5, despite its tendency to write initial application code in the __init__.py,
also shows that it can effectively use more files as the project complexity grows.

We also measure the solution verbosity, measured in LOC1, visualised in Figure 7 (right). When comparing the rate of
LOC growth over iterations, it is important to bear in mind that not all models managed to implement each feature fully
- the less ‘agentic’ GPT models and Gemini flash 2.5 all scored lower in the held-out test suite, possibly explaining the
low, linear LOC growth. Sonnet 3.7’s over-eagerness shows in the strong super-linear LOC growth, with Sonnet 4.0
walking back on this tendency while achieving comparable results. Gemini 2.5 Pro also shows a strong rate of LOC
growth when implementing more complicated later features.

1we treat lines of code as non-whitespace lines, but do include comments in the count

5

iGent AI Sonnet 4.0 VIBECODEBENCH

0 2 4 6 8
Feature Iteration

1

2

3

4

5

6
Av

er
ag

e
Co

un
t

Number of Files
Sonnet 4.0
Sonnet 3.7
Sonnet 3.5 v2
Gemini 2.5 Pro (05-06)
Gemini 2.5 Flash (04-17)
GPT 4o
GPT 4.1

0 2 4 6 8
Feature Iteration

0

250

500

750

1000

1250

1500

1750

2000

Av
er

ag
e

LO
C

Solution Verbosity - LOC
Sonnet 4.0
Sonnet 3.7
Sonnet 3.5 v2
Gemini 2.5 Pro (05-06)
Gemini 2.5 Flash (04-17)
GPT 4o
GPT 4.1

Figure 7: Left: number of files in the solution, right: verbosity of the agent’s solution. Note that the thick line at 2 in
the file count plot includes both Gemini models and Sonnet 4.0.

0 2 4 6 8
Feature Iteration

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Lin
es

 o
f C

od
e

Average Function Length
Sonnet 4.0
Sonnet 3.7
Sonnet 3.5 v2
Gemini 2.5 Pro (05-06)
Gemini 2.5 Flash (04-17)
GPT 4o
GPT 4.1

0 2 4 6 8
Feature Iteration

0

10

20

30

40

50

60

70

80

Co
un

t

Dead Code
Sonnet 4.0
Sonnet 3.7
Sonnet 3.5 v2
Gemini 2.5 Pro (05-06)
Gemini 2.5 Flash (04-17)
GPT 4o
GPT 4.1

Figure 8: Left: average lines of code per function, Right: counts of dead code instances (unused variables, functions or
other symbols).

In Figure 8 (left) we measure the average function length across the generated codebases - Gemini 2.5 Pro is a clear
outlier in this regard producing very long functions. Sonnet 4.0 produces marginally shorter functions than Sonnet 3.5
and 3.7.

6

iGent AI Sonnet 4.0 VIBECODEBENCH

On the right pane of Figure 8 we count the instances of dead code. These become particularly prevalent after the types
of refactors or feature pivots that this benchmark is trying to induce. We find that Sonnet 4.0 does far better than Sonnet
3.7 at cleaning up dead code. This propensity to clean up after itself is something that Sonnet 4.0 carries across to other
areas (e.g. deleting temporary testing or debugging scripts when they are no longer needed).

0 1 2 3 4 5 6 7
Feature Iteration

40

50

60

70

80

Sc
or

e

Code Quality (higher is better)

Sonnet 4.0
Sonnet 3.7
Sonnet 3.5 v2
Gemini 2.5 Pro (05-06)
Gemini 2.5 Flash (04-17)
GPT 4o
GPT 4.1

Figure 9: Custom measure of code quality

Finally, we report a more general internal programmatic measure of code quality, which takes into account common
complexity metrics (Cyclomatic, ABC), redundant or duplicate code, structural heuristics (argument counts, method
counts, attribute counts), code style and documentation, security issues, performance issues and about 30 other properties.
We plot this in Figure 9, which shows that Sonnet 4.0 improves on Sonnet 3.5 and 3.7 even in the face of increasing
feature complexity. It performs comparably to Gemini 2.5 Pro in this regard.

6 Anecdotal Observations

Here are some anecdotal observations about the model:

1. The model does a better job of cleaning up temporary files that it created after itself
2. It seems more enthusiastic than 3.7 after (minor) successes. The old Sonnet behaviour of saying “Excellent!” or

“Great!” after tests pass remains, but now even a single newly passing test in a suite of 100s is enough to conclude
“tremendous progress!” has been made.

3. It appears very self-assured and quick to say “I can see exactly what’s wrong” before barreling into a debugging
approach. The conviction is good for action, but may yield higher-variance outcomes.

4. It makes more effective use of temporary script (e.g. for debugging, file manipulations, etc) than previous Anthropic
models.

7

iGent AI Sonnet 4.0 VIBECODEBENCH

A Example Problem Descriptions

To help interpret the benchmark results, here are some descriptions of the benchmark problems, the feature evolutions,
and what they are designed to test:

• The state machine benchmark tests maintainability by forcing architectural pivots that expose design flaws.
Hierarchical states are introduced at F3, requiring fundamental restructuring of previously flat state representations.
This tests for whether agents prioritized extensibility in their initial design. History states (F4) further reveal
abstraction quality by requiring state memory while preserving structural integrity. The progression from simple
transitions to complex behaviours like auto-transitions (F7) and serialization (F9) tests whether abstractions remain
coherent when extended in unexpected directions.

• The URL router benchmark progressively introduces complex routing concepts. Beginning with simple path
matching, it introduces dynamic parameters (F1) and query strings (F2) to test data extraction capabilities. HTTP
method routing (F3) adds the first pivot transforming the system from one-dimensional to two-dimensional matching
and revealing whether initial data structures anticipated this expansion. Middleware support (F5) represents another
architectural shift, followed by introducing route groups (F6), validations (F7), and dynamic registration (F8), all
of which stress the maintainability of initial design decisions.

• The configuration manager benchmark progresses from a simple key-value store into a sophisticated configuration
platform. Feature pivots begin from Feature 2, which converts a flat structure into a hierarchical tree using dotted
notation, which requires redesigning flat data models. Multiple configuration sources (F3) further tests abstraction
quality by introducing prioritized value resolution from different origins. Event-driven notifications (F5) introduces
a publisher-subscriber pattern that tests whether mutation points were clearly encapsulated. String interpolation
(F7) and environment profiles (F8) add orthogonal dimensions that expose poor initial abstractions.

• The task scheduler benchmark begins with basic task management, introducing queuing (F1) and temporal
scheduling (F2) before reaching its first architectural pivot at recurring tasks (F3), which requires distinguishing
between task definitions and execution instances. Introducing the notion of dependencies (F4) exposes design flaws
in simple state representation formats which now need to be refactored into a directed graph structure. Resource
management (F5) adds another orthogonal dimension that must coordinate with both timing and dependencies. Later
features like retry handling (F6), persistence (F7), and advanced workflows (F8) test whether initial abstractions
are adaptable.

8

	Introduction and Setup
	Interpreting the Results

	Marginal Cost Per Feature
	Code Correctness
	Goalpost-Moving
	Code Quality
	Anecdotal Observations
	Example Problem Descriptions

